题目内容
⊙O1与⊙O2的半径分别为2cm和1cm,⊙O1和⊙O2相交于A,B两点,并且O1A⊥O2A,则公共弦AB的长是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
分析:利用连心线垂直平分公共弦的性质,构造直角三角形利用勾股定理及有关性质解题.
解答:
解:连接O1和O2,与公共弦AB相交于点C,即AC=
AB,
∵O1A⊥O2A,
∴O1O2=
=
cm,
∵∠O1=∠O1,∠ACO1=∠O1AO2=90°,
∴Rt△CO1A∽Rt△AO1O2,
∴
=
,
∴O1A2=O1C•O1O2,
则O1C=
=
cm,
∴O2C=O1O2-O1C=
cm,
故AC2=O1C•O2C=
•
=
,
∴公共弦AB=2AC=
cm.
故选B.
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201112/77/1e168591.png)
1 |
2 |
∵O1A⊥O2A,
∴O1O2=
4+1 |
5 |
∵∠O1=∠O1,∠ACO1=∠O1AO2=90°,
∴Rt△CO1A∽Rt△AO1O2,
∴
O1A |
O1O2 |
O1C |
O1A |
∴O1A2=O1C•O1O2,
则O1C=
O1A2 |
O102 |
4
| ||
5 |
∴O2C=O1O2-O1C=
| ||
5 |
故AC2=O1C•O2C=
4
| ||
5 |
| ||
5 |
20 |
25 |
∴公共弦AB=2AC=
4 |
5 |
5 |
故选B.
点评:主要考查了相交两圆中的有关性质.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目