题目内容
是正整数,最小的整数n是( )
A. 3 B. 2 C. 48 D. 6
|﹣6|的相反数是( )
A. 6 B. ﹣6 C. D.
十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中“80万亿元”用科学记数法表示为________________元.
解不等式组:, 并把解集在数轴上表示出来.
【答案】-3<x≤1
【解析】分析:分别解不等式,在数轴上表示出解集,找出解集的公共部分即可.
详【解析】,
解不等式①得:,
解不等式②得:
∴原不等式组的解集为-3<x≤1
解集在数轴上表示为:
点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.
【题型】解答题【结束】17
下图是由边长为1个单位长度的小正方形组成的网格,线段AB的端点在格点上.
(1)请建立适当的平面直角坐标系xOy,使得A点的坐标为(-3,-1),在此坐标系下,B点的坐标为________________;
(2)将线段BA绕点B逆时针旋转90°得线段BC,画出BC;在第(1)题的坐标系下,C点的坐标为__________________;
(3)在第(1)题的坐标系下,二次函数y=ax2+bx+c(a≠0)的图象过O、B、C三点,则此函数图象的对称轴方程是________________.
如图,在□ABCD中,E、F分别为BC、AD的中点,AE、CF分别交BD于点M、N,则四边形 AMCN与□ABCD的面积比为( )
A. B. C. D.
【答案】B
【解析】分析:根据平行四边形一顶点和对边中点的连线一定三等分平行四边形的一对角线,可得: 即可得出结论.
详【解析】由题意可得:M、N为线段BD的三等分点,
∴
故选B.
点睛:平行四边形一顶点和对边中点的连续一定三等分平行四边形的一对角线.
【题型】单选题【结束】10
如图,在平面直角坐标系xOy中,A(2,0),B(0,2),点M在线段AB上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为( )
已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.
(1)求证:CE=AD;
(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
如果一元二次方程满足,那么我们称这个方程为“阿凡达”方程,已知是“阿凡达”方程,且有两个相等的实数根,则下列结论正确的是( )