题目内容

如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是(  )
A.750米B.1000米C.1500米D.2000米
作A关于CD的对称点A′,连接A′B,交CD于M,
∴CA′=AC,
∵AC=DB,
∴CA′=BD,
由分析可知,点M为饮水处,
∵AC⊥CD,BD⊥CD,
∴∠ACD=∠A′CD=∠BDC=90°,
又∵∠A′MC=∠BMD,
在△CA′M和△DBM中,
∠A′MC=∠BMD
∠A′CM=∠BDM
CA′=BD

∴△CA′M≌△DBM(AAS),
∴A′M=BM,CM=DM,
即M为CD中点,
∴AM=BM=A′M=500,
所以最短距离为2AM=2×500=1000米,
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网