题目内容
【题目】如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是m2 .
【答案】240
【解析】解:在矩形ABCD中,AF∥EC, 又AF=EC,
∴四边形AECF是平行四边形.
在Rt△ABE中,AB=60,AE=100,
根据勾股定理得BE=80,
∴EC=BC﹣BE=4,
所以这条小路的面积S=ECAB=4×60=240(m2).
所以答案是:240.
【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分,以及对矩形的性质的理解,了解矩形的四个角都是直角,矩形的对角线相等.
练习册系列答案
相关题目
【题目】为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.
组别 | 捐款额(x)元 | 户数 |
A | 1≤x<50 | a |
B | 50≤x<100 | 10 |
C | 100≤x<150 | |
D | 150≤x<200 | |
E | x≥200 |
请结合以上信息解答下列问题.
(1)a= , 本次调查样本的容量是;
(2)补全“捐款户数分组统计表和捐款户数统计图1”;
(3)若该社区有1500户住户,请根据以上信息估计,全社区捐款不少于150元的户数是多少?