题目内容
【题目】下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB =40°,∠AOC= ∠BOC,则∠AOC的度数为20°;③若线段AB=3, BC=2,则线段AC的长为1或5;④若∠a+∠β=180°,且∠a<∠β,则∠a的余角为(∠β-∠a).其中正确结论的个数( )
A.1个B.2个C.3个D.4个
【答案】A
【解析】
根据相交线的定义,角平分线的定义,线段的和差,余角和补角的定义进行判断找到正确的答案即可.
解:①平面内3条直线两两相交,如下图,
有1个(左图)或3个交点(右图),故错误;
②在平面内,若∠AOB=40°,∠AOC=∠BOC,如下图,
∠AOC的度数为20°(左图)或160°(右图),故错误;
③若线段AB=3,BC=2,因为点C不一定在直线AB上,所以无法求得AC的长度,故错误;
④若∠α+∠β=180°,则,则当∠a<∠β时,,则,故该结论正确.
故正确的有一个,选:A.
【题目】参照学习函数的过程与方法,探完函数y=(x≠0)的图象与性质,因为y==1﹣,即y=﹣+1,所以我们对比函数y=﹣来探究.
操作:面出函数y=(x≠0)的图象.
列表:
X | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣ | 1 | 2 | 3 | 4 | … | |
y=﹣ | … | 1 | 2 | 4 | ﹣4 | ﹣2 | ﹣1 | ﹣ | ﹣ | … | ||
y= | … |
| 2 | 3 | 5 | ﹣3 | ﹣1 | 0 | … |
描点:在平面直角坐标中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出如图所示相应的点;
连线:请把y轴左边和右边各点,分别用一条光滑曲线顺次连接起来.
观察:由图象可知:
①当x>0时,y随x的增大而 (填“增大”或“减小”)
②y=的图象可以由y=﹣的图象向 平移 个单位长度得到.
③y的取值范围是 .
探究:①A(m1,n1),B(m2,n2)在函数y=图象上,且n1+n2=2,求m1+m2的值;
②若直线l对应的函数关系式为y1=kx+b,且经过点(﹣1,3)和点(1,﹣1),y2=,若y1>y2,则x的取值范围为 .
延伸:函数y=的图象可以由反比例函数y= 的图象向 平移 个单位,再向 平移 个单位得到.