题目内容
【题目】如图,每个小正方形的边长为1.
(1)求四边形ABCD的面积和周长;
(2)∠BCD是直角吗?说明理由.
【答案】(1)5+3+5,17.5;(2)见解析.
【解析】
(1)直接利用勾股定理得出各边长,进而利用四边形所在矩形面积减去周围三角形面积得出答案;
(2)利用勾股定理的逆定理得出答案.
(1)由勾股定理可得:AB2=72+12=50,
则AB==5,
∵BC2=42+22=20,
∴BC=2,
∵CD2=22+12=5,
∴CD=,
∵AD2=32+42=25,
∴AD=5,
故四边形ABCD的周长为:5+2+5+=5+3+5,
四边形ABCD的面积为:7×5﹣(1×7+4×2+2×1+4×3)﹣3=35﹣17.5=17.5;
(2)由(1)得:BC2=20,CD2=5,而BD2=32+42=25,
故DC2+BC2=BD2,
则∠BCD=90°.
练习册系列答案
相关题目
【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组 | 频数 | 频率 |
第一组(0≤x<15) | 3 | 0.15 |
第二组(15≤x<30) | 6 | a |
第三组(30≤x<45) | 7 | 0.35 |
第四组(45≤x<60) | b | 0.20 |
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?