题目内容

【题目】已知:△ABC内接于⊙O,过点A作直线EF.
(1)如图①,AB为直径,要使EF为⊙O的切线,还需添加的条件是(只需写出三种情况): ①;②;③
(2)如图②,AB是非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线.
(3)如图③,AB是非直径的弦,∠CAE=∠ABC,EF还是⊙O的切线吗?若是,请说明理由;若不是,请解释原因.

【答案】
(1)AB⊥EF、;∠BAE=90°;∠ABC=∠EAC
(2)证明:如图2,作直径AD,连结CD,

∵AD为直径,

∴∠ACD=90°,

∴∠D+∠CAD=90°,

∵∠D=∠B,∠CAE=∠B,

∴∠CAE=∠D,

∴∠EAC+∠CAD=90°,

∴AD⊥EF,

∴EF为⊙O的切线;


(3)如图3,作直径AD,连结CD,BD,

∵AD为直径,

∴∠ABD=90°,

∵∠CAE=∠ABC,

∴∠DAE+∠DAC=∠ABD+∠DBC,

而∠DAC=∠DBC,

∴∠DAE=∠ABD=90°,

∴AD⊥EF,

∴EF为⊙O的切线.


【解析】(1)解:当AB⊥EF或∠BAE=90°可判断EF为⊙O的切线; 当∠ABC=∠EAC,∵AB为直径,
∴∠ACB=90°,
∴∠ABC+∠CAB=90°,
∴∠EAC+∠CAB=90°,
∴AB⊥EF,
∴EF为⊙O的切线;
所以答案是AB⊥EF、∠BAE=90°、∠ABC=∠EAC;

【考点精析】掌握切线的判定定理是解答本题的根本,需要知道切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网