题目内容

【题目】一副直角三角板如图放置,点A在ED上,∠F=∠ACB=90°,∠E=30°,∠B=45°,AC=12,试求BD的长.

【答案】解:∵在Rt△ABC中,∠ACB=90°,∠B=45°, ∴BC=AC=12.
∵在Rt△ACD中,∠ACD=90°,∠ADC=90°﹣∠E=60°,
∴CD= =4
∴BD=BC﹣DC=12﹣4
【解析】先解Rt△ABC,由∠ACB=90°,∠B=45°,得出BC=AC=12.再解Rt△ACD,求出∠ADC=90°﹣∠E=60°,根据三角函数定义得到CD= =4 ,那么BD=BC﹣DC=12﹣4
【考点精析】根据题目的已知条件,利用解直角三角形的相关知识可以得到问题的答案,需要掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网