题目内容
若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是________.
如图,是直径,是的切线,连接交于点,连接,,则的度数是( ).
A. B. C. D.
已知|x|=3,y2=16,xy<0,则x﹣y=_____.
如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形.若存在,请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到 达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
如图 , 等边 △A1C1C2 的周长为 1, 作 C1D1⊥A1C2 于 D1, 在 C1C2 的延长线上取点 C3, 使 D1C3=D1C1, 连接 D1C3, 以 C2C3 为边作等边 △A2C2C3; 作C2D2⊥A2C3 于 D2, 在 C2C3 的延长线上取点 C4, 使 D2C4=D2C2, 连接 D2C4,以 C3C4 为边作等边 △A3C3C4;… 且点 A1,A2,A3,… 都在直线 C1C2 同侧 , 如此下去 , 则 △A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1 的周长和为_______.(n≥2,且 n为整数).(面积之和?)
今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )种
A. 6 B. 5 C. 4 D. 3
计算:|-|的倒数是( )
A. B. - C. 3 D. -3
如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是
A. B. C. D. 不能确定
学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。