题目内容
【题目】如图,抛物线y=﹣x2+2x+3交x轴于A,B两点,交y轴于点C,点D为抛物线的顶点,点C关于抛物线的对称轴的对称点为E,点G,F分别在x轴和y轴上,则四边形EDFG周长的最小值为_____.
【答案】 +
【解析】
根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(-1,4)、作点E关于x轴的对称点E′(2,-3),从而得四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据两点间的距离公式可得答案.
解:如图,
在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴对称轴为x=1,顶点D(1,4),
则点C关于对称轴的对称点E的坐标为(2,3),
作点D关于y轴的对称点D′(﹣1,4),作点E关于x轴的对称点E′(2,﹣3),
连接D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,
四边形EDFG的周长=DE+DF+FG+GE
=DE+D′F+FG+GE′
=DE+D′E′
=.
∴四边形EDFG的周长的最小值为: +.
故答案是: +.
练习册系列答案
相关题目
【题目】已知二次函数的解析式是y=x2﹣2x﹣3.
(1)与y轴的交点坐标是 ,顶点坐标是 .
(2)在坐标系中利用描点法画出此抛物线;
x | … | … | |||||
y | … | … |
(3)结合图象回答:当﹣2<x<2时,函数值y的取值范围是 .