题目内容
【题目】如图,为线段上一动点(点不与点、重合),在线段的同侧分别作等边和等边,连结、,交点为.若,求动点运动路径的长为( )
A.B.C.D.
【答案】B
【解析】
根据题意分析得出点Q运动的轨迹是以AB为弦的一段圆弧,当点P运动到AB的中点处时PQ取得最大值,过点P作OP⊥AB,取AQ的中点E作OE⊥AQ交PQ于点O,连接OA,设半径长为R,则根据勾股定列出方程求出R的值,再根据弧长计算公式l=求出l值即可.
解:依题意可知,点Q运动的轨迹是以AB为弦的一段圆弧,当点P运动到AB的中点处时PQ取得最大值,如图所示,连接PQ,取AQ的中点E作OE⊥AQ交直线PQ于点O,连接OA,OB.
∵P是AB的中点,
∴PA=PB=AB=6=3.
∵和是等边三角形,
∴AP=PC,PB=PD,∠APC=∠BPD=60°,
∴AP=PD,∠APD=120°.
∴∠PAD=∠ADP=30°,
同理可证:∠PBQ=∠BCP=30°,
∴∠PAD=∠PBQ.
∵AP=PB,
∴PQ⊥AB.
∴tan∠PAQ==
∴PQ= .
在Rt△AOP中,
即
解得:OA= .
∵sin∠AOP===
∴∠AOP=60°.
∴∠AOB=120°.
∴l=== .
故答案选B.
练习册系列答案
相关题目