题目内容
【题目】已知,平分,平分.
(1)求的度数;
(2)如图2,过点的直线交射线于点,交射线于点,求证:;
(3)如图3,过点的直线交射线的反向延长线于点,交射线于点,,,,求的面积.
【答案】(1)90°;(2)见解析;(3)8
【解析】
(1)根据平行线的性质得到∠BAM+∠ABN=180°,根据角平分线的定义得到∠BAE=∠BAM,∠ABE=∠ABN,于是得到结论;
(2)在AB上截取AF=AC,连接EF,根据全等三角形的性质得到∠AEC=∠AEF,BF=BD,等量代换即可得到结论;
(3)延长AE交BD于F,根据等腰三角形的性质得到AB=BF=5,AE=EF,根据全等三角形的性质得到DF=AC=3,设S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,根据S△ABE-S△ACE=2,即可得到结论.
解:(1)∵AM∥BN,
∴∠BAM+∠ABN=180°,
∵AE平分∠BAM,BE平分∠ABN,
∴∠BAE=∠BAM,∠ABE=∠ABN,
∴∠BAE+∠ABE=(∠BAM+∠ABN)=90°,
∴∠AEB=90°;
(2)在AB上截取AF=AC,连接EF,
在△ACE与△AFE中,
,
∴△ACE≌△AFE,
∴∠AEC=∠AEF,
∴∠AEB=90°,
∴∠AEF+∠BEF=∠AEC+∠BED=90°,
∴∠FEB=∠DEB,
在△BFE与△BDE中,
,
∴△BFE≌△BDE(ASA),
∴BF=BD,
∵AB=AF+BF,
∴AC+BD=AB;
(3)延长AE交BD于F,
∵∠AEB=90°,
∴BE⊥CD,
BE平分∠ABN,
∴AB=BF=5,AE=EF,
∵AM∥BN,
∴∠C=∠EDF,
在△ACE与△FDE中,
,
∴△ACE≌△FDE(AAS),
∴DF=AC=3,
∵BF=5,
∴设S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,
∵S△ABE-S△ACE=2,
∴5x-3x=2,
∴x=1,
∴△BDE的面积=8.
【题目】小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验.
(1)他们在一次实验中共做了次试验,试验的结果如下:
朝上的点数 | ||||||
出现的次数 |
①填空:此次实验中“点朝上”的频率为________;
②小红说:“根据实验,出现点朝上的概率最小.”她的说法正确吗?为什么?
(2)小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.
【题目】小华有一个容最为8()的盘,盘中已经存储了一个视频文件,其余空间都用来存储照片,且每张照片占用的内存容量均相同,已知剩余可用空间与图片数量(张)满足一次函数关系,对应数据如下表:
图片数量(张) | 100 | 150 |
剩余可用空间 | 5700 | 5550 |
(1)求出与之间的关系式,并求出盘中视频文件占用的内存容量;
(2)若盘中已经存入1280张照片,那么最多还能存入多少张照片?