题目内容
【题目】某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
【答案】
(1)解:由题意得:
y=90﹣3(x﹣50)
化简得:y=﹣3x+240
(2)解:由题意得:
w=(x﹣40)y
(x﹣40)(﹣3x+240)
=﹣3x2+360x﹣9600
(3)解:w=﹣3x2+360x﹣9600
∵a=﹣3<0,
∴抛物线开口向下.
当 =60时,w有最大值.
又x<60,w随x的增大而增大.
∴当x=55元时,w的最大值为1125元.
∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.
【解析】(1)抓住已知条件,价格每提高1元,平均每天少销售3箱.可列出y与x之间的函数关系式。
(2)根据平均每天的销售利润w=(每一箱的售价-每一箱的进价)销售量y。即可列出函数关系式。
(3)根据题意求出顶点坐标,结合已知规定每箱售价不得高于55元,即可得出结论。
【考点精析】关于本题考查的二次函数的最值,需要了解如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a才能得出正确答案.
【题目】在《朗读者》节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生的读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
册数 | 0 | 1 | 2 | 3 | 4 |
人数 | 3 | 13 | 16 | 17 | 1 |
关于这组数据,下列说法正确的是 ( )
A. 中位数是2 B. 众数是17 C. 平均数是3 D. 方差是2