ÌâÄ¿ÄÚÈÝ
Æ½ÃæÖ±½Ç×ø±êϵÖУ¬Õý·½ÐÎAOBCÈçͼËùʾ£¬µãCµÄ×ø±êΪ£¨a£¬a£©£¬ÆäÖÐaʹµÃ
+
ʽ×ÓÓÐÒâÒ壬·´±ÈÀýº¯Êýy=
µÄͼÏó¾¹ýµãC¡£
£¨1£©Çó·´±ÈÀýº¯Êý½âÎöʽ£»
£¨2£©ÈôÓÐÒ»µãD×ÔAÏòOÔ˶¯£¬ÇÒÂú×ãAD2=OD¡¤AO£¬Çó´ËʱDµã×ø±ê£»
£¨3£©ÈôµãDÔÚAOÉÏ¡¢GΪOBµÄÑÓ³¤ÏßÉϵĵ㣬AD=BG£¬Á¬½ÓAB½»DGÓÚµãH£¬Ð´³öAB-2HBÓëADÖ®¼äµÄÊýÁ¿¹ØÏµ£¨Ö±½Óд³ö²»ÐèÖ¤Ã÷£©£»
£¨4£©Èçͼ£¬µãEΪÕý·½ÐÎAOBCµÄOB±ßÒ»µã£¬µãFΪBCÉÏÒ»µãÇÒ¡ÏCAE=¡ÏFEA=60¡ã£¬ÇóÖ±ÏßEFµÄ½âÎöʽ¡£
£¨1£©Çó·´±ÈÀýº¯Êý½âÎöʽ£»
£¨2£©ÈôÓÐÒ»µãD×ÔAÏòOÔ˶¯£¬ÇÒÂú×ãAD2=OD¡¤AO£¬Çó´ËʱDµã×ø±ê£»
£¨3£©ÈôµãDÔÚAOÉÏ¡¢GΪOBµÄÑÓ³¤ÏßÉϵĵ㣬AD=BG£¬Á¬½ÓAB½»DGÓÚµãH£¬Ð´³öAB-2HBÓëADÖ®¼äµÄÊýÁ¿¹ØÏµ£¨Ö±½Óд³ö²»ÐèÖ¤Ã÷£©£»
£¨4£©Èçͼ£¬µãEΪÕý·½ÐÎAOBCµÄOB±ßÒ»µã£¬µãFΪBCÉÏÒ»µãÇÒ¡ÏCAE=¡ÏFEA=60¡ã£¬ÇóÖ±ÏßEFµÄ½âÎöʽ¡£
½â£º£¨1£©
ÓÐÒâÒ壬Ôòa=1
°ÑC£¨1£¬1£©´úÈë
ÖеÃk=1£¬
¡à![]()
£¨2£©OA=1£¬OD=1-AD
AD2=OD¡¤AO=1¡¤£¨1-AD£©
AD2+AD-1=0
AD=
¡ßAD£¾0
¡àAD=
£¬OD=![]()
¹ÊD£¨0£¬
£©
£¨3£©AB-2HB=
AD
£¨4£©¡ß¡ÏCAE=¡ÏFEA=60¡ã
¡à¡ÏOAE=30¡ã
OA=1£¬
ÉèOE=x£¬ÔòAE=2x
x2+12=£¨2x£©2
½âµÃ£¬x=
£¬OE=
£¬AE=![]()
¡ÏBEF=180¡ã-¡ÏOEA-¡ÏAEF=60¡ã
BE=1-OE=1-
£¬FE=2-
£¬BF=
-1
¡àE£¨
£¬0£© F£¨1£¬
-1£©
Éè½âÎöʽΪy=kx+b£¬
½âµÃ![]()
¡ày=
x-1¡£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿