题目内容
![](http://thumb.zyjl.cn/pic3/upload/images/201312/159/a1440e6f.png)
分析:先根据∠ACB=90°可知∠DBF+∠BAC=90°,再由FD⊥AB可知∠BDF=90°,所以∠DBF+∠BFD=90°,通过等量代换即可得出∠BAC=∠BFD,故①正确;根据∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I可知∠EFN=∠EAM,再由对顶角相等可知∠FEN=∠AEM,根据三角形外角的性质即可判断出∠ENI=∠EMI,故②正确;由①知∠BAC=∠BFD,因为∠BAC、∠BFD的平分线交于点I,故∠MAD=∠MFI,再根据∠AMD=∠FMI可知,∠AIF=∠ADM=90°,即AI⊥FI,故③正确;因为BI不是∠B的平分线,所以∠ABI≠∠FBI,故④错误.
解答:解:∵∠ACB=90°,
∴∠DBF+∠BAC=90°,
∵FD⊥AB,
∴∠BDF=90°,
∴∠DBF+∠BFD=90°,
∴∠BAC=∠BFD,故①正确;
∵∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,
∴∠EFN=∠EAM,
∵∠FEN=∠AEM,
∴∠ENI=∠EMI,故②正确;
∵由①知∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,
∴∠MAD=∠MFI,
∵∠AMD=∠FMI,
∴∠AIF=∠ADM=90°,即AI⊥FI,故③正确;
∵BI不是∠B的平分线,
∴∠ABI≠∠FBI,故④错误.
故选C.
∴∠DBF+∠BAC=90°,
∵FD⊥AB,
∴∠BDF=90°,
∴∠DBF+∠BFD=90°,
∴∠BAC=∠BFD,故①正确;
∵∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,
∴∠EFN=∠EAM,
∵∠FEN=∠AEM,
∴∠ENI=∠EMI,故②正确;
∵由①知∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,
∴∠MAD=∠MFI,
∵∠AMD=∠FMI,
∴∠AIF=∠ADM=90°,即AI⊥FI,故③正确;
∵BI不是∠B的平分线,
∴∠ABI≠∠FBI,故④错误.
故选C.
点评:本题考查的是三角形内角和定理及三角形外角的性质,熟知三角形的内角和等于180°是解答此题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目