题目内容
如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a∥b)的一边b上,若∠1=30°,则三角板的斜边与长尺的另一边a的夹角∠2的度数为( )
分析:根据平行线性质求出∠4,得出∠5的度数,根据等腰直角三角形得出∠5=45°,根据三角形的外角性质求出即可.
解答:解:
∵a∥b,
∴∠1=∠4=30°,
∵∠4=∠3,
∴∠3=30°,
∵△ACB是等腰直角三角形,
∴∠5=∠A=45°,
∵∠2+∠3=∠5,
∴∠2=45°-30°=15°,
故选B.
∵a∥b,
∴∠1=∠4=30°,
∵∠4=∠3,
∴∠3=30°,
∵△ACB是等腰直角三角形,
∴∠5=∠A=45°,
∵∠2+∠3=∠5,
∴∠2=45°-30°=15°,
故选B.
点评:本题考查了等腰直角三角形,平行线性质,三角形的外角性质等知识点,关键是求出∠5和∠3的度数.
练习册系列答案
相关题目