题目内容
【题目】在长方形纸片ABCD中,AB=m,AD=n,将两张边长分别为6和4的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.
(1)在图1中,EF=___,BF=____;(用含m的式子表示)
(2)请用含m、n的式子表示图1,图2中的S1,S2,若m-n=2,请问S2-S1的值为多少?
【答案】(1)EF=10-m;BF= m-6;(2)8;
【解析】
(1)根据线段的和差即可求出EF与BF;
(2)利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.
(1)EF=AF-AE
=AF-(AB-BE)
=AF-AB+BE
=6-m+4
=10-m,
BF=BE-EF
=4-(10-m)
=m-6.
故答案为10-m,m-6;
(2)∵S1=6(AD-6)+(BC-4)(AB-6)=6(n-6)+(n-4)(m-6)=mn-4m-12,
S2=AD(AB-6)+(AD-6)(6-4)=n(m-6)+2(n-6)=mn-4n-12,
∴S2-S1
=mn-4n-12-(mn-4m-12)
=4m-4n
=4(m-n)
=4×2
=8.
练习册系列答案
相关题目