题目内容
【题目】如图,在平面直角坐标系xOy中,若点A(﹣2,n),B(1,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标;
(3)求点O到直线AB的距离.
【答案】(1)反比例函数的解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(2)点C(﹣1,0);(3)点O到直线AB的距离为.
【解析】试题分析:(1)根据点B的坐标求出反比例函数解析式,根据反比例函数得出点A的坐标,最后根据A、B的坐标得出一次函数解析式;(2)令y=0得出点C的坐标;(3)利用面积法求出点O到直线的距离.
试题解析:(1)∵点B(1,-2)在函数y=的图象上,∴, 得:m=-2.
∴反比例函数的解析式为y=-.
∵点A(-2,n)在函数y=-的图象上, ∴得:n=1.∴A(-2,1)
∵y=kx+b经过点A和点B ∴解得:
∴一次函数的解析式为y=-x-1.
(2)在一次函数的解析式y=-x-1中,令y=0得x=-1.∴点C的坐标为(-1,0).
(3)设点到直线AB的距离为直线AB与轴相交于,则.
则: .
点到直线AB的距离为.
【题目】据报道,某公司的33名职工的月工资如下(单位:元):
职务 | 董事长 | 副董事长 | 总经理 | 董事 | 经理 | 管理员 | 职员 |
人数 | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工资 | 5500 | 5000 | 3500 | 3230 | 2730 | 2200 | 1500 |
(1)该公司职工的月工资的平均数= 元、中位数= 元、众数= 元.
(2)假设副董事长的工资从5 000元涨到15 000元,董事长的工资从5 500元涨到28 500元,那么新的平均工资= 元、中位数= 元、众数= 元.(精确到1元)
(3)你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?