题目内容

【题目】定义:有三个内角相等的四边形叫三等角四边形.

(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;

(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.

(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.

【答案】(1)60°<∠A<120°;(2)证明见解析;(3)当AD=2时,AB的长最大,最大值是5,此时AC=

【解析】

试题分析:(1)根据四边形的内角和是360°,确定出∠A的范围;

(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC,即可;

(3)分三种情况分别讨论计算AB的长,从而得出当AD=2时,AB最长,最后计算出对角线AC的长.

试题解析:(1)∵∠A=∠B=∠C,∴3∠A+∠ADC=360°,∴∠ADC=360°﹣3∠A.

∵0<∠ADC<180°,∴0°<360°﹣3∠A<180°,∴60°<∠A<120°;

(2)证明:∵四边形DEBF为平行四边形,∴∠E=∠F,且∠E+∠EBF=180°.

∵DE=DA,DF=DC,∴∠E=∠DAE=∠F=∠DCF,∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,∴∠DAB=∠DCB=∠ABC,∴四边形ABCD是三等角四边形

(3)①当60°<∠A<90°时,如图1,过点D作DF∥AB,DE∥BC,∴四边形BEDF是平行四边形,∠DFC=∠B=∠DEA,∴EB=DF,DE=FB,∵∠A=∠B=∠C,∠DFC=∠B=∠DEA,∴△DAE∽△DCF,AD=DE,DC=DF=4,设AD=x,AB=y,∴AE=y﹣4,CF=4﹣x,∵△DAE∽△DCF,∴,∴,∴=,∴当x=2时,y的最大值是5,即:当AD=2时,AB的最大值为5

②当∠A=90°时,三等角四边形是正方形,∴AD=AB=CD=4

③当90°<∠A<120°时,∠D为锐角,如图2,∵AE=4﹣AB>0,∴AB<4,综上所述,当AD=2时,AB的长最大,最大值是5;

此时,AE=1,如图3,过点C作CM⊥AB于M,DN⊥AB,∵DA=DE,DN⊥AB,∴AN=AE=,∵∠DAN=∠CBM,∠DNA=∠CMB=90°,∴△DAN∽△CBM,∴,∴BM=1,∴AM=4,CM==,∴AC===

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网