题目内容
九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.
第二学习小组发现:如图(2),点P是反比例函数y=
| k |
| x |
请利用上述结论解决下列问题:
(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则S△BDF=
(2)如图(4),点P、Q在反比例函数y=
| k |
| x |
(3)如图(5)点P、Q是第一象限的点,且在反比例函数y=
| k |
| x |
分析:(1)连接CF,根据正方形的性质可知,CF∥BD,△CBD与△FBD同底等高,故S△BDF=S△BDC,可求解;
(2)设P(x,y),则k=xy,根据P点所在象限及P、Q关于原点中心对称,得GQ=-2x,PG=2y,由已知,得S△PQG=
×GQ×PG=8,可求S△POH及k的值;
(3)作PA⊥y轴,QB⊥x轴,垂足为A,B,连接PN,MQ,根据双曲线的性质可知,S矩形AOMP=S矩形BONQ=k,可得S矩形ANCP=S矩形BMCQ,则有S△NCP=S△MCQ,S△NPQ=S△MPQ,可证PQ∥MN.
(2)设P(x,y),则k=xy,根据P点所在象限及P、Q关于原点中心对称,得GQ=-2x,PG=2y,由已知,得S△PQG=
| 1 |
| 2 |
(3)作PA⊥y轴,QB⊥x轴,垂足为A,B,连接PN,MQ,根据双曲线的性质可知,S矩形AOMP=S矩形BONQ=k,可得S矩形ANCP=S矩形BMCQ,则有S△NCP=S△MCQ,S△NPQ=S△MPQ,可证PQ∥MN.
解答:解:(1)连接CF,
∵四边形ABCD与四边形CEFG都是正方形,
∴CF∥BD,△CBD与△FBD同底等高,
∴S△BDF=S△BDC=
S正方形ABCD=2;

(2)设P(x,y),则k=xy,
根据题意,得GQ=-2x,PG=2y,
∴S△PQG=
×GQ×PG=8,即
•(-2x)•2y=8,
解得xy=-4,即k=-4,
S△POH=
×OH×PH=-
xy=2;
(3)PQ∥MN.
理由:作PA⊥y轴,QB⊥x轴,垂足为A,B,连接PN,MQ,
根据双曲线的性质可知,S矩形AOMP=S矩形BONQ=k,
∴S矩形ANCP=S矩形BMCQ,可知S△NCP=S△MCQ,
∴S△NPQ=S△MPQ,
∴PQ∥MN.
故本题答案为:(1)2,(2)2,-4.
∵四边形ABCD与四边形CEFG都是正方形,
∴CF∥BD,△CBD与△FBD同底等高,
∴S△BDF=S△BDC=
| 1 |
| 2 |
(2)设P(x,y),则k=xy,
根据题意,得GQ=-2x,PG=2y,
∴S△PQG=
| 1 |
| 2 |
| 1 |
| 2 |
解得xy=-4,即k=-4,
S△POH=
| 1 |
| 2 |
| 1 |
| 2 |
(3)PQ∥MN.
理由:作PA⊥y轴,QB⊥x轴,垂足为A,B,连接PN,MQ,
根据双曲线的性质可知,S矩形AOMP=S矩形BONQ=k,
∴S矩形ANCP=S矩形BMCQ,可知S△NCP=S△MCQ,
∴S△NPQ=S△MPQ,
∴PQ∥MN.
故本题答案为:(1)2,(2)2,-4.
点评:本题通过反比例函数的知识,考查学生的猜想探究能力.解题时先直观地猜想,再按照从特殊到一般的方法去验证.
练习册系列答案
相关题目