题目内容

【题目】如图(1),点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交直线AB于点Q,交CA的延长线于点R.

(1)请观察AR与AQ,它们相等吗?并证明你的猜想.
(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明.

【答案】
(1)解:AR=AQ.

理由如下:∵△ABC是等腰三角形,

∴AB=AC,

∴∠B=∠C,

∵PR⊥BC,

∴∠B+∠BQP=90°,

∠C+∠PRC=90°,

∴∠BQP=∠PRC,

∵∠BQP=∠AQR(对顶角相等),

∴∠AQR=∠PRC,

∴AR=AQ


(2)AR=AQ依然成立.

理由如下:如图,∵△ABC是等腰三角形,

∴AB=AC,

∴∠ABC=∠C,

∵∠ABC=∠PBQ(对顶角相等),

∴∠C=∠PBQ,

∵PR⊥BC,

∴∠R+∠C=90°,

∠Q+∠PBQ=90°,

∴∠Q=∠R,

∴AR=AQ.


【解析】(1)根据等腰三角形的性质求出∠B=∠C,根据等角的余角相等求出∠BQP=∠PRC,再根据对顶角相等可得∠BQP=∠AQR,从而得到∠AQR=∠PRC,然后根据等角对等边证明即可;(2)根据等腰三角形的性质求出∠ABC=∠C,再根据对顶角相等可得∠ABC=∠PBQ,从而得到∠C=∠PBQ,然后根据等角的余角相等求出∠Q=∠R,最后根据等角对等边证明即可.
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网