题目内容
【题目】如图,△ABC中,∠A=90°,D为AC上一点,E为BC上一点,点A和点E关于BD对称,点B和点C关于DE对称.求∠ABC和∠C的度数.
【答案】∠C=30°,∠ABC=60°.
【解析】
借助轴对称的性质,A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD,B点、C点关于DE对称,可得∠DBE=∠BCD,结合上式可得:∠ABC=2∠BCD,且∠ABC+∠BCD=90°,进而求得∠ABC、∠C的值.
解:∵A点和E点关于BD对称,
∴∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.
又B点、C点关于DE对称,
∴∠DBE=∠C,∠ABC=2∠C.
∵∠A=90°,
∴∠ABC+∠C=2∠C+∠C=3∠C=90°.
∴∠C=30°
∴∠ABC=2∠C=60°.
练习册系列答案
相关题目