题目内容
25
.分析:根据题意仔细观察可得到正方形A,B,C,D的面积的和等于最大的正方形的面积,已知最大的正方形的边长则不难求得其面积.
解答:解:由图可看出,A,B的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;
C,D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A,B,C,D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是25,即正方形A,B,C,D的面积的和为25.
故答案为25.
C,D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A,B,C,D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是25,即正方形A,B,C,D的面积的和为25.
故答案为25.
点评:此题结合正方形的面积公式以及勾股定理发现各正方形的面积之间的关系.
练习册系列答案
相关题目
按如图所示的规律用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,并解答下面问题:![]()
(1)将下表填写完整
| 图形编号 | (1) | (2) | (3) | (4) | … |
| 黑色瓷砖的块数 | 10 | 14 | 18 | ______ | … |
| 白色瓷砖的块数 | 2 | 6 | 12 | ______ | … |
(2)第(n)个图形中,共有黑色瓷砖______块,共有白色瓷砖______块;(用含n的代数式表示,答案直接写在题中横线上);
(3)如果每块黑色瓷砖12元每块白瓷砖10元,求购买铺设第(8)个图形所需瓷砖的费用;
(4)是否存在第(n)个图形,该图形所需白、黑瓷砖的总数为18325块?若存在,求出该图形的编号n;若不存在,请说明理由.