题目内容
【题目】看图填空:
已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC.
证明:∵AD⊥BC,EF⊥BC(已知)
∴∠ADC=90°,∠EFC=90°(垂线的定义)
∴ =
∥
∴∠1=
∠2=
∵∠1=∠2(已知)
∴ =
∴AD平分∠BAC(角平分线定义)
【答案】∠ADC,∠EFC,AD,EF,∠BAD,∠CAD,∠BAD=∠CAD.
【解析】
试题分析:根据垂直定义得出∠ADC=∠EFC,根据平行线的判定推出AD∥EF,根据平行线的性质推出∠1=∠BAD,∠2=∠CAD,推出∠BAD=∠CAD即可.
试题解析:证明:∵AD⊥BC,EF⊥BC,
∴∠ADC=∠EFC=90°,
∴AD∥EF(同位角相等,两直线平行),
∴∠1=∠BAD(两直线平行,内错角相等),
∠2=∠DAC(两直线平行,同位角相等),
∵∠1=∠2(已知),
∴∠BAD=∠DAC(等量代换),
∴AD平分∠BAC,
练习册系列答案
相关题目