题目内容
【题目】把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,……如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:
,
,
所以32和70都是“快乐数”.
(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;并说明理由;
(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.
【答案】(1)10,是,理由见详解;(2)310和860.
【解析】
(1)根据“快乐数”的定义计算即可;
(2)设三位“快乐数”为100a+10b+c,根据“快乐数”的定义计算.
解:(1)∵12+02=1,
∴最小的两位“快乐数”10,
∵19→12+92=82→82+22=68→62+82=100→12+02+02=1,
∴19是快乐数;
(2)设三位“快乐数”为100a+10b+c,由题意,经过两次运算后结果为1,所以第一次运算后结果一定是10或者100,
则a2+b2+c2=10或100,
∵a、b、c为整数,且a≠0,
∴当a2+b2+c2=10时,12+32+02=10,
①a=1,b=3或0,c=0或3时,三位“快乐数”为130,103,
②当a=2时,无解;
③当a=3,b=1或0,c=0或1时,三位“快乐数”为310,301,
同理当a2+b2+c2=100时,62+82+02=100,
∴三位“快乐数”有680,608,806,860.
综上一共有130,103,310,301,680,608,806,860八个,
又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,
∴只有310和860满足已知条件.