题目内容
【题目】如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.
【答案】证明:∵AE平分∠DAC,
∴∠1=∠2,
∵AE∥BC,
∴∠1=∠B,∠2=∠C,
∴∠B=∠C,
∴AB=AC
【解析】根据角平分线的定义可得∠1=∠2,再根据两直线平行,同位角相等可得∠1=∠B,两直线平行,内错角相等可得∠2=∠C,从而得到∠B=∠C,然后根据等角对等边即可得证.
【考点精析】解答此题的关键在于理解平行线的性质的相关知识,掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,以及对等腰三角形的判定的理解,了解如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.
练习册系列答案
相关题目