题目内容
【题目】在四边形ABCD中,AB=BC,对角线BD平分,P是BD上一点,过P作PM⊥AD于点M,PN⊥CD于点N.
(1)求证: ;
(2)若,求证:四边形MPND是正方形。
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.
试题解析:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,
,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB;
(2)∵PM⊥AD,PN⊥CD,
∴∠PMD=∠PND=90°,
∵∠ADC=90°,
∴四边形MPND是矩形,
∠ADB=∠CDB,
∴∠ADB=45°
∴PM=MD,
∴四边形MPND是正方形.
练习册系列答案
相关题目