题目内容
【题目】如图,在矩形ABCD中,AB=4,AD=6,E是AD边上的一个动点,将四边形BCDE沿直线BE折叠,得到四边形BC′D′E,连接AC′,AD′.
(1)若直线DA交BC′于点F,求证:EF=BF;
(2)当AE=时,求证:△AC′D′是等腰三角形;
(3)在点E的运动过程中,求△AC′D′面积的最小值.
【答案】(1)证明见解析;(2)证明见解析;(3)4.
【解析】
(1)根据折叠的性质和平行线的性质得:∠FBE=∠FEB,则EF=BF;
(2)如图1,先根据勾股定理计算BE的长,根据直角边和斜边的关系可得:∠ABE=30°,则△BEF是等边三角形,最后根据平行线分线段成比例定理,由FC'∥AH∥ED',得C'H=D'H,从而得结论;
(3)如图1,根据三角形面积公式可知:当C'D'最小时,△AC′D′面积最小,如图2,当C'、A、B三点共线时,△AC′D′面积最小,计算AC'=2,根据三角形面积公式可得结论.
解:(1)证明:如图1,由折叠得:∠FBE=∠CBE,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠FEB=∠CBE,
∴∠FBE=∠FEB,
∴EF=BF;
(2)在Rt△ABE中,∵AB=4,AE=,
∴BE=,
∴∠ABE=30°,
∴∠AEB=60°,
由(1)知:EF=BF,
∴△BEF是等边三角形,
∵AB⊥EF,
∴AE=AF,
过A作AH⊥C'D',
∵FC'⊥C'D',ED'⊥C'D',
∴FC'∥AH∥ED',
∴C'H=D'H,
∵AH⊥C'D',
∴AC'=AD',
∴△AC′D′是等腰三角形;
(3)如图1,S△C'D'A=AHC'D'=×4C′D′=2C'D',
当C'D'最小时,△AC′D′面积最小,
如图2,当C'、A、B三点共线时,△AC′D′面积最小,
由折叠得:BC=BC'=6,∠C=∠C'=90°,
∵AB=4,
∴AC'=64=2,
△AC′D′面积的最小值=AC′C′D′=×2×4=4.
【题目】某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.
(1)收集数据:从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述数据:按如下分数段整理、描述这两组样本数据:
成绩x 人数 班级 | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x≤100 |
甲班 | 1 | 3 | 3 | 2 | 1 |
乙班 | 2 | 1 | m | 2 | n |
在表中:m=______,n=______.
(3)分析数据:
①两组样本数据的平均数、中位数、众数如表所示:
班级 | 平均数 | 中位数 | 众数 |
甲班 | 72 | x | 75 |
乙班 | 72 | 70 | y |
在表中:x=______,y=______.
②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有______人.
③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.