题目内容
【题目】在矩形ABCD中,AB=6,AD=9,点E为线段AD上一点,且DE=2AE,点G是线段AB上的动点,EF⊥EG交BC所在直线于点F,连接GF.则GF的最小值是( )
A.3B.6C.6D.3
【答案】D
【解析】
过点F作FM⊥AD于M,证△AEG∽△MEF,设AG=x,利用相似的性质用含x的代数式表示EM的长度,在Rt△GBF中,利用勾股定理用含x的代数式表示出GF2,利用函数的性质求出其最小值,再求出GF的最小值即可.
解:如图,过点F作FM⊥AD于M,
∵四边形ABCD为矩形,
∴∠A=∠EMF=90°,MF=AB=6,
∵EF⊥GE,
∴∠AGE+∠AEG=90°,∠AEG+∠MEF=90°,
∴∠AGE=∠MEF,
∴△AEG∽△MFE,
∴,
设AG=x,
∵AD=9,DE=2AE,
∴AE=3,
∴,
∴ME=2x,
∴BF=AM=3+2x,
在Rt△GBF中,
GF2=GB2+BF2
=(6﹣x)2+(3+2x)2
=5x2+45,
∵点G在线段AB上,
∴0≤x≤6,
由二次函数的性质可知,当x=0时,GF2有最小值45,
∴GF的最小值为3,
故选D.
练习册系列答案
相关题目