题目内容
【题目】如图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC=,则AF的长度为( )
A. B. C. D.
【答案】A.
【解析】
试题分析:连接BD,如图所示:
在矩形ABCD中,∠C=90°,CD=AB=1,在Rt△BCD中,CD=1,BC=,∴tan∠CBD=,BD=2,∴∠CBD=30°,∠ABD=60°,由旋转得,∠CBC1=∠ABA1=30°,∴点C1在BD上,连接BF,由旋转得,AB=A1B,∵矩形A1BC1D1是矩形ABCD旋转所得,∴∠BA1F=∠BAF=90°,∵AF=AF,∴△A1BF≌△ABF,∴∠A1BF=∠ABF,∵∠ABA1=30°,∴∠ABF=∠ABA1=15°,∵∠ABD=60°,∴∠DBF=75°,∵AD∥BC,∴∠ADB=∠CBD=30°,∴∠BFD=75°,∴DF=BD=2,∴AF=DF﹣AD=,故选A.
练习册系列答案
相关题目