题目内容
【题目】在一次数学课上,老师在屏幕上出示了一个例题:在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,画出图形(如图),给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.
(1)要求同学从这四个等式中选出两个作为已知条件,可判定△ABC是等腰三角形.
请你用序号在横线上写出所有情形.答:
(2)选择第(1)题中的一种情形,说明△ABC是等腰三角形的理由,并写出解题过程.
解:我选择 .
证明:
【答案】(1)①③,①④,②③和②④;(2)以①④为条件,理由见解析.
【解析】
试题(1)要证△ABC是等腰三角形,就要证∠ABC=∠ACB,根据已知条件即可找到证明∠ABC=∠ACB的组合;(2)以①④为条件, 由OC=OB,可得出∠OCB=∠OBC,再由∠DBO=∠ECO,就能证明∠ABC=∠ACB,即可判定△ABC是等腰三角形..
试题解析:解:(1)①③,①④,②③和②④;
(2)以①④为条件,理由:
∵OB=OC,
∴∠OBC=∠OCB.
又∵∠DBO=∠ECO,
∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.
练习册系列答案
相关题目