题目内容

【题目】二次函数y=ax2+bx+4的图像与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0)

(1)求此二次函数的表达式
(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣ ,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标
(3)如图2,点M在抛物线上,且点M的横坐标是1,点P为抛物线上一动点,若∠PMA=45°,求点P的坐标.

【答案】
(1)

解:当x=0时,y=4,

∴C(0,4).

设抛物线的解析式为y=a(x+1)(x﹣4),将点C的坐标代入得:﹣4a=4,解得a=﹣1,

∴抛物线的解析式为y=﹣x2+3x+4


(2)

解:x=﹣ =

∴CD= ,EF=

设点N的坐标为( ,a)则ND=4﹣a,NE=a.

当△CDN∽△FEN时, ,即 ,解得a=

∴点N的坐标为( ).

当△CDN∽△NEF时, ,即 = ,解得:a=2.

∴点N的坐标为( ,2).

综上所述,点N的坐标为( )或( ,2)


(3)

解:如图所示:过点A作AD∥y轴,过点M作DM∥x轴,交点为D,过点A作AE⊥AM,取AE=AM,作EF⊥x轴,垂足为F,连结EM交抛物线与点P.

∵AM=AE,∠MAE=90°,

∴∠AMP=45°.

将x=1代入抛物线的解析式得:y=6,

∴点M的坐标为(1,6).

∴MD=2,AD=6.

∵∠DAM+∠MAF=90°,∠MAF+∠FAE=90°,

∴∠DAM=∠FAE.

在△ADM和△AFE中,

∴△ADM≌△AFE.

∴EF=DM=2,AF=AD=6.

∴E(5,﹣2).

设EM的解析式为y=kx+b.

将点M和点E的坐标代入得: ,解得k=﹣2,b=8,

∴直线EM的解析式为y=﹣2x+8.

将y=﹣2x+8与y=﹣x2+3x+4联立,解得:x=1或x=4.

将x=4代入y=﹣2x+8得:y=0.

∴点P的坐标为(4,0)


【解析】(1)先求得点C的坐标,设抛物线的解析式为y=a(x+1)(x﹣4),将点C的坐标代入求得a的值,从而得到抛物线的解析式;(2)先求得抛物线的对称轴,然后求得CD,EF的长,设点N的坐标为(0,a)则ND=4﹣a,NE=a,然后依据相似三角形的性质列出关于a的方程,然后可求得a的值;(3)过点A作AD∥y轴,过点M作DM∥x轴,交点为D,过点A作AE⊥AM,取AE=AM,作EF⊥x轴,垂足为F,连结EM交抛物线与点P.则△AME为等腰直角三角形,然后再求得点M的坐标,从而可得到MD=2,AD=6,然后证明∴△ADM≌△AFE,于是可得到点E的坐标,然后求得EM的解析式为y=﹣2x+8,最后求得直线EM与抛物线的交点坐标即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网