题目内容
【题目】某校在学习贯彻十九大精神“我学习,我践行”的活动中,计划组织全校1300名师生到林业部门规划的林区植树,经研究,决定租用当地出租车公司提供的两种型号的客车共50辆作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量与租车信息:
型号 | 载客量 | 租金单价 |
30人/辆 | 300元/辆 | |
20人/辆 | 240元/辆 |
注:载客量指的是每辆车客车最多可载该校师生的人数
(1)设租用型号客车辆,租车总费用元,求与的函数解析式,并直接写出的取值范围;
(2)若要使租车总费用不超过13980元,一共有几种租车方案?哪种租车方案最省钱?
【答案】(1), 且为整数.(2)一共有4种租车方案,当租用型号30辆,型号20辆时最省钱.
【解析】
(1)根据租车总费用=每辆A型号客车的租金单价×租车辆数+每辆B型号客车的租金单价×租车辆数,即可得出y与x之间的函数解析式,再由全校共1300名师生需要坐车可求出x的取值范围;
(2)由租车总费用不超过13980元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其中的整数即可找出各租车方程,再利用一次函数的性质即可找出最省钱的租车方案.
(1)根据题意得:y=300x+240(50-x)=60x+12000,
∵30x+20(50-x)≥1300,
∴x≥30,
∴y与x的函数解析式为y=60x+12000(x≥30);
(2)根据题意得:60x+12000≤13980,
解得:x≤33,
∴共有4种租车方案,方案1:租A型号客车30辆,B型号客车20辆;方案2:租A型号客车31辆,B型号客车19辆;方案3:租A型号客车32辆,B型号客车18辆;方案4:租A型号客车33辆,B型号客车17辆,
∵60>0,
∴y值随x的增大而增大,
∴当x=30时,y取得最小值,
∴租车方案1,即租A型号客车30辆,B型号客车20辆时最省钱.