题目内容
如图,已知⊙O1和⊙O2相交于点A、B,过点A作直线分别交⊙O1、⊙O2于点C、D,过点B作直线分别交⊙O1、⊙O2于点E、F,求证:CE∥DF.
分析:连接AB,根据圆周角定理易证∠E=∠DFB,然后根据平行线的判定定理即可证明.
解答:证明:连接AB.
∵A、B、E、C在⊙O1上,
∴∠DAB=∠E,
又∵A、D、B、F在⊙O2上,
∴∠DAB=∠DFB.
∴∠E=∠DFB,
∴CE∥DF.
∵A、B、E、C在⊙O1上,
∴∠DAB=∠E,
又∵A、D、B、F在⊙O2上,
∴∠DAB=∠DFB.
∴∠E=∠DFB,
∴CE∥DF.
点评:本题考查了圆周角定理,理解定理是关键.
练习册系列答案
相关题目