题目内容
(1)请画出关于
轴对称的
(其中分别是
的对应点,不写画法);
(2)直接写出三点的坐标:
.
(3)计算△ABC的面积.
①略
②A‘(2,3); B‘(3,1) ;C’(-1,-2)
③S△ABC=5.5
解析:
①略 (3分);
②A‘(2,3); B‘(3,1) ;C’(-1,-2) (3分)
③S△ABC=5.5 (2分)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,an表示第n个“树型”图中“树枝”的个数.
图:![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201201/58/afc4397d.png)
表:
(1)根据“图”、“表”可以归纳出an关于n的关系式为 .
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=
(x>0)经过点M,且与直线l2相交于另一点N.
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.
图:
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201201/58/afc4397d.png)
表:
n | 1 | 2 | 3 | 4 | … |
an | 1 | 3 | 7 | 15 | … |
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=
k |
x |
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201201/58/5d214d3d.png)
探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,an表示第n个“树型”图中“树枝”的个数.
图:![](http://thumb.zyjl.cn/pic5/upload/201308/528634339443f.png)
表:
n | 1 | 2 | 3 | 4 | … |
an | 1 | 3 | 7 | 15 | … |
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=
![数学公式](http://thumb.zyjl.cn/pic5/latex/9448.png)
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic5/upload/201308/52863433a8b65.png)
(2007•镇江)探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,an表示第n个“树型”图中“树枝”的个数.
图:![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231655334761263/SYS201310212316553347612028_ST/images0.png)
表:
(1)根据“图”、“表”可以归纳出an关于n的关系式为______.
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=
(x>0)经过点M,且与直线l2相交于另一点N.
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231655334761263/SYS201310212316553347612028_ST/images2.png)
图:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231655334761263/SYS201310212316553347612028_ST/images0.png)
表:
n | 1 | 2 | 3 | 4 | … |
an | 1 | 3 | 7 | 15 | … |
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231655334761263/SYS201310212316553347612028_ST/0.png)
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231655334761263/SYS201310212316553347612028_ST/images2.png)
(2007•镇江)探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,an表示第n个“树型”图中“树枝”的个数.
图:![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/201310201213236806124296/SYS201310201213236806124023_ST/images0.png)
表:
(1)根据“图”、“表”可以归纳出an关于n的关系式为______.
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=
(x>0)经过点M,且与直线l2相交于另一点N.
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/201310201213236806124296/SYS201310201213236806124023_ST/images2.png)
图:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/201310201213236806124296/SYS201310201213236806124023_ST/images0.png)
表:
n | 1 | 2 | 3 | 4 | … |
an | 1 | 3 | 7 | 15 | … |
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/201310201213236806124296/SYS201310201213236806124023_ST/0.png)
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/201310201213236806124296/SYS201310201213236806124023_ST/images2.png)
(2007•镇江)探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,an表示第n个“树型”图中“树枝”的个数.
图:![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131019110437298720779/SYS201310191104372987207028_ST/images0.png)
表:
(1)根据“图”、“表”可以归纳出an关于n的关系式为______.
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=
(x>0)经过点M,且与直线l2相交于另一点N.
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131019110437298720779/SYS201310191104372987207028_ST/images2.png)
图:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131019110437298720779/SYS201310191104372987207028_ST/images0.png)
表:
n | 1 | 2 | 3 | 4 | … |
an | 1 | 3 | 7 | 15 | … |
若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(an,an+1)都在直线l1上.
(2)设直线l2:y=-x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131019110437298720779/SYS201310191104372987207028_ST/0.png)
①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.
②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.
③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131019110437298720779/SYS201310191104372987207028_ST/images2.png)