题目内容

【题目】如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=2cm.
(1)图中共有多少条线段?
(2)求AC的长.
(3)若点E在直线AD上,且EA=3cm,求BE的长.

【答案】解:(1)图中共有6条线段;
(2)∵点B为CD的中点.
∴CD=2BD.
∵BD=2cm,
∴CD=4cm.
∵AC=AD﹣CD且AD=8cm,CD=4cm,
∴AC=4cm;
(3)当E在点A的左边时,
则BE=BA+EA且BA=6cm,EA=3cm,
∴BE=9cm
当E在点A的右边时,
则BE=AB﹣EA且AB=6cm,EA=3cm,
∴BE=3cm.
【解析】(1)根据线段的定义找出线段即可;
(2)先根据点B为CD的中点,BD=2cm求出线段CD的长,再根据AC=AD﹣CD即可得出结论;
(3)由于不知道E点的位置,故应分E在点A的左边与E在点A的右边两种情况进行解答.
【考点精析】掌握直线、射线、线段和两点间的距离是解答本题的根本,需要知道直线射线与线段,形状相似有关联.直线长短不确定,可向两方无限延.射线仅有一端点,反向延长成直线.线段定长两端点,双向延伸变直线.两点定线是共性,组成图形最常见;同轴两点求距离,大减小数就为之.与轴等距两个点,间距求法亦如此.平面任意两个点,横纵标差先求值.差方相加开平方,距离公式要牢记.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网