题目内容
【题目】如图,已知四边形ABCD顶点A、B在x轴上,点D在y轴上,函数y=(x>0)的图象经过点C(2,3),直线AD交双曲线于点E,并且EB⊥x轴,CD⊥y轴,EB与CD交于点F.
(1)若EB=OD,求点E的坐标;
(2)若四边形ABCD为平行四边形,求过A、D两点的函数关系式.
【答案】(1)(,4); (2)y=3x+3.
【解析】分析:(1)根据点C坐标求出反比例函数的解析式,再求出点E的纵坐标,即可解决问题.
(2)设E(m, ),则B(m,0),由四边形ABCD是平行四边形,推出CD=AB=2,由DF∥AB,推出,推出,解得m=1,可得E(1,6),设直线AD的解析式为y=kx+b,利用待定系数法即可解决问题.
本题解析:(1)∵C(2,3),
把C(2,3)代入y=中,k=6,
∴y= ,
∵CD⊥y轴,
∴OD=3,
∵BE=OD,
∴BE=4,
∴y=4时,4=,
∴x=,
∴点E坐标(,4);
(2)设E(m, ),则B(m,0),
∵四边形ABCD是平行四边形,
∴CD=AB=2,
∵DF∥AB,
∴,
∴,
解得m=1,
∴E(1,6),
设直线AD的解析式为y=kx+b,则有,
解得,
∴直线AD的解析式为y=3x+3.
练习册系列答案
相关题目