题目内容

如果用正三角形和正十二边形作平面镶嵌,可能的情形有


  1. A.
    1种
  2. B.
    2种
  3. C.
    4种
  4. D.
    3种
A
分析:由于正三角形和正十二边形的内角分别为60°,150°,根据平面镶嵌的条件可知,在一个顶点处各个内角和为360°,可以列出二元一次方程,求出其正整数解即可.
解答:设在一个顶点周围有m个正三角形,n个正十二边形的角.
因为正三角形的每个内角60°,正十二边形每个内角150°
所以60m+150n=360,
解得
因此用正三角形和正十二边形镶嵌,只可能有1种情况.
故选:A.
点评:此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网