题目内容

已知,点的内部,,关于对称,关于对称,则△的周长为    ;若上有一动点,上有一动点,则△的最小周长为    .
18,6
(1)∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2
∴OP=OP1=OP2=6,且∠P1OP2=2∠AOB=60°,
∴故△OP1P2是等边三角形.
∴△P1OP2的周长=3×6=18;
(2)分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.
∵点P关于OA的对称点为C,关于OB的对称点为D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵点P关于OB的对称点为D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等边三角形,
∴CD=OC=OD=6.
∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=6.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网