题目内容

如下图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1。
(1)求证∠BPQ=60°;
(2)求AD的长。
解:(1)∵△ABC是等边三角形,
∴AB=AC,∠BAE=∠ACD=60°,
又∵AE=CD,
∴△BAE≌△ACD,
∴∠1=∠2,
∵∠BAE=∠1+∠BAD=60°,
∴∠BAE=∠2+∠BAD=60°,
∴∠BPQ=60°;
(2)∵BQ⊥AD,
∴∠BQP=90°,
又∵∠BPQ=60°,
∴∠PBQ=30°,
∴BP=2PQ=2×4=8,
∴BE=BP+PE=8+1=9,
由(1)知△BAE≌△ACD,
∴CD=AE=9。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网