题目内容
在时,时钟上的时针和分针的夹角为________.
如果257+513能被n整除,则n的值可能是( )
A. 20 B. 30 C. 35 D. 40
如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.
(1)求二次函数y=ax2+2x+c的表达式;
(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;
(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.
(1)求出抛物线C1的解析式,并写出点G的坐标;
(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:
(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.
如图所示的是一个长,宽,高的长方体,现在把它等分为个棱长为的小正方体
说明你的分法;
把这个小正方体排成一排组成一个新长方体,这个新长方体与原长方体相比.表面积怎样变化?
一条直线上取三个点,最多可以确定________条射线.
由直线上一点向同侧引射线、、(如图),则图中共有( )个角小于平角.
A. 4 B. 5 C. 9 D. 10
如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为________.
如图,,.
用直尺和圆规作的平分线,交于,并在上取一点,使,再连接,交于;(要求保留作图痕迹,不必写出作法)
依据现有条件,直接写出图中所有相似的三角形,(图中不再增加字母和线段,不要求证明).