题目内容
【题目】已知关于x的方程x2﹣(2k﹣3)x+k2+1=0.
(1)当k为何值时,此方程有实数根;
(2)若此方程的两个实数根x1、x2满足|x1|+|x2|=3,求k的值.
【答案】(1)当k≤时,此方程有实数根;(2)k的值为0.
【解析】
试题分析:(1)根据判别式的意义得到△=(2k﹣3)2﹣4(k2+1)≥0,然后解不等式即可;
(2)根据根与系数的关系得到x1+x2=2k﹣3,x1x2=k2+1>0,则可判断x1、x2同号,然后去绝对值,当x1+x2=3,即2k﹣3=3;当﹣(x1+x2)=3,即﹣(2k﹣3)=3,然后分别解关于k的方程即可.
解:(1)若方程有实数根,
则△=(2k﹣3)2﹣4(k2+1)≥0,
∴k≤
∴当k≤时,此方程有实数根;
(2)根据题意得x1+x2=2k﹣3,x1x2=k2+1>0,
则x1、x2同号,
当x1>0,x2>0,则x1+x2=3,即2k﹣3=3,解得k=3,
当k=3时,原方程无实数根,舍去,
当x1<0,x2<0,则﹣(x1+x2)=3,即﹣(2k﹣3)=3,解得k=0,
即k的值为0.
【题目】小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表:
月 均 用水量 | |||||||
频数 | 2 | 12 | ① | 10 | ② | 3 | 2 |
百分比 | 4% | 24% | 30% | 20% | ③ | 6% | 4% |
(1)请根据题中已有的信息补全频数分布表:① ,② ,③ ;
(2)如果家庭月均用水量“大于或等于5t且小于8t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?
(3)记月均用水量在范围内的两户为、,在范围内3户为、、,从这5户家庭中任意抽取2户,试完成下表,并求出抽取的2户家庭来自不同范围的概率.