题目内容
【题目】如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).
(1)点C的坐标是;
(2)将△ABC沿x轴正方向平移得到△A′B′C′,且B,C两点的对应点B′,C′恰好落在反比例函数y= 的图象上,求该反比例函数的解析式.
【答案】
(1)(﹣3,2)
(2)
解:设△ABC沿x轴的正方向平移c个单位,
则C′(﹣3+c,2),则B′(c,1)
又点C′和B′在该比例函数图象上,
∴k=2(﹣3+c)=c,
即﹣6+2c=c,
解得c=6,
即反比例函数解析式为y= .
【解析】(1.)作CN⊥x轴于点N,根据HL证明Rt△CAN≌Rt△AOB,求出NO的长度,进而求出点C的坐标;
(2.)设△ABC沿x轴的正方向平移c个单位,用c表示出C′和B′,根据两点都在反比例函数图象上,求出k的值,进而求出c的值,即可求出反比例函数的解析式.
练习册系列答案
相关题目