题目内容
如图1,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止,已知△PAD的面积S(单位:cm2)与点P移动的时间t(单位:s)的函数关系式如图2,则点P从开始移动到停止移动一共用了 s.
分析:根据图②判断出AB、BC的长度,过点B作BE⊥AD于点E,然后求出梯形ABCD的高BE,再根据t=2时△PAD的面积求出AD的长度,过点C作CF⊥AD于点F,然后求出DF的长度,利用勾股定理列式求出CD的长度,然后求出AB、BC、CD的和,再根据时间=路程÷速度计算即可得解
解答:解:由图2可知,t在2到4秒时,△PAD的面积不发生变化,
∴在AB上运动的时间是2秒,在BC上运动的时间是4-2=2秒,
∵动点P的运动速度是1cm/s,
∴AB=2cm,BC=2cm,
过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,
则四边形BCFE是矩形,
∴BE=CF,BC=EF=2cm,
∵∠A=60°,
∴BE=ABsin60°=2×
=
,
AE=ABcos60°=2×
=1,
∴
×AD×BE=2
,
即
×AD×
=2
,
解得AD=4cm,
∴DF=AD-AE-EF=4-1-2=1,
在Rt△CDF中,CD=
=
=2,
所以,动点P运动的总路程为AB+BC+CD=2+2+2=6,
∵动点P的运动速度是1cm/s,
∴点P从开始移动到停止移动一共用了6÷1=6(秒).
故答案为:6.
∴在AB上运动的时间是2秒,在BC上运动的时间是4-2=2秒,
∵动点P的运动速度是1cm/s,
∴AB=2cm,BC=2cm,
过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,
则四边形BCFE是矩形,
∴BE=CF,BC=EF=2cm,
∵∠A=60°,
∴BE=ABsin60°=2×
| ||
2 |
3 |
AE=ABcos60°=2×
1 |
2 |
∴
1 |
2 |
3 |
即
1 |
2 |
3 |
3 |
解得AD=4cm,
∴DF=AD-AE-EF=4-1-2=1,
在Rt△CDF中,CD=
DF2+CF2 |
(
|
所以,动点P运动的总路程为AB+BC+CD=2+2+2=6,
∵动点P的运动速度是1cm/s,
∴点P从开始移动到停止移动一共用了6÷1=6(秒).
故答案为:6.
点评:本题考查了动点问题的函数图象,根据图②的三角形的面积的变化情况判断出AB、BC的长度是解题的关键,根据梯形的问题中,经常作过梯形的上底边的两个顶点的高线作出辅助线也很关键.
练习册系列答案
相关题目