题目内容
【题目】如图,在平面直角坐标系xOy中,已知⊙A经过点E、B、O、C,点C在y轴上,点E在x轴上,点A的坐标为(﹣2,1),则sin∠OBC的值是_____.
【答案】
【解析】
连接EC,由∠COE=90°,根据圆周角定理可得:EC是⊙A的直径,求出OE和OC,根据勾股定理求出EC,解直角三角形求出即可.
过A作AM⊥x轴于M,AN⊥y轴于N,连接EC,
∵∠COE=90°,
∴EC是⊙A的直径,即EC过O,
∵A(﹣2,1),
∴OM=2,ON=1,
∵AM⊥x轴,x轴⊥y轴,
∴AM∥OC,
同理AN∥OE,
∴N为OC中点,M为OE中点,
∴OE=2AN=4,OC=2AM=2,
由勾股定理得:EC=,
∵∠OBC=∠OEC,
∴sin∠OBC=sin∠OEC=.
故答案是:.
【题目】某商店销售一种商品,童威经市场调查发现:该商品的周销售量(件)是售价(元/件)的一次函数,其售价、周销售量、周销售利润(元)的三组对应值如下表:
售价(元/件) | 50 | 60 | 80 |
周销售量(件) | 100 | 80 | 40 |
周销售利润(元) | 1000 | 1600 | 1600 |
注:周销售利润=周销售量×(售价-进价)
(1)①求关于的函数解析式(不要求写出自变量的取值范围)
②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元
(2)由于某种原因,该商品进价提高了元/件,物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求的值
【题目】《中国汉字听写大会》唤醒了很多人对文字基本功的重视和对汉字文化的学习,我市某校组织了一次全校2000名学生参加的“汉字听写大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:
抽取的200名学生海选成绩分组表
组别 | 海选成绩x |
A组 | 50≤x<60 |
B组 | 60≤x<70 |
C组 | 70≤x<80 |
D组 | 80≤x<90 |
E组 | 90≤x≤100 |
请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为 ,表示C组扇形的圆心角θ的度数为 度;
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?
(4)经过统计发现,在E组中,有2位男生和2位女生获得了满分,如果从这4人中挑选2人代表学校参加比赛,请用树状图或列表法求出所选两人正好是一男一女的概率是多少?