题目内容

【题目】如图,在正方形ABCD中,AB=1,点EF分别在边BCCD上,AEAF,∠EAF=60°,则CF的长是____

【答案】

【解析】

先证△ABE≌△ADF,再求tan15°的大小,可得DF的长,最终得到CF

∵四边形ABCD是正方形

∴∠B=D=90°AB=AD=1

AE=AF

∴△ABE≌△ADF,∴∠BAE=DAF

∵∠EAF=60°

∴∠BAE=FAD=15°

DF=ADtan15°=tan15°

如下图,在△MNQ中,∠M=15°,∠N=90°,在MN上取一点P,使得PQ=PM

PQ=PM,∠M=15°

∴∠PQM=15°

∵∠N=90°,∴∠NQM=75°

∴∠NQP=60°

NQ=x

RtNPQ中,NP=PQ=2x

在△PMQ中,PM=2x

∴在RtMNQ中,tan15°=tanM=

FD=

CF=CD-DF=

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网