题目内容
数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如,求1+2+3+4+…+n的值,其中n是正整数.
对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.
如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为
n(n+1) |
2 |
n(n+1) |
2 |
(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)
(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)
分析:根据例题所示选择合适的图形来解决问题,对于题目中所给的奇数相加的公式,我们不难发现它的递增也是有规律的,所以我们仍可以参照例子作出相应的图形利用平行四边形法求解;另外我们可以发现公式的增值是2,我们可以看做是在原点的基础上伸出两个端点依次加2,然后这n个图形相组合,可以得到多个答案,选择你认为最为简单的图形进行解答.
解答:解:(1)
因为组成此平行四边形的小圆圈共有n行,每行有[(2n-1)+1]个,即2n个,
所以组成此平行四边形的小圆圈共有(n×2n)个,即2n2个.
∴1+3+5+7+…+(2n-1)=
=n2.
(2)
因为组成此正方形的小圆圈共有n行,每行有n个,所以共有(n×n)个,即n2个.
∴1+3+5+7+…+(2n-1)=n×n=n2.
因为组成此平行四边形的小圆圈共有n行,每行有[(2n-1)+1]个,即2n个,
所以组成此平行四边形的小圆圈共有(n×2n)个,即2n2个.
∴1+3+5+7+…+(2n-1)=
n[(2n-1)+1] |
2 |
(2)
因为组成此正方形的小圆圈共有n行,每行有n个,所以共有(n×n)个,即n2个.
∴1+3+5+7+…+(2n-1)=n×n=n2.
点评:把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.
练习册系列答案
相关题目