题目内容
如图,△ABC中,BD=DC,AE=EC,AD与BE相交于点O,则下列结论中,错误的是( )
分析:由于BD=DC,AE=EC,那么O是△ABC的重心,则有AO=2OD,故选项A、B结论正确;而∵∠AOE=∠BOD,
=2≠
=
,△BOD、△AOE不相似,选项C结论错误;易证DE是△ABC的中位线,故有DE∥AB,那么△CDE∽△CBA,结论D正确.
AO |
OD |
OE |
OB |
1 |
2 |
解答:解:如图所示,
∵BD=DC,AE=EC,
∴O是△ABC的重心,
∴AO=2OD,
故选项A、B结论正确;
∵∠AOE=∠BOD,
=2≠
=
,
∴△BOD、△AOE不相似,
故选项C结论错误;
∵BD=DC,AE=EC,
∴DE是△ABC的中位线,
∴DE∥AB,
∴△CDE∽△CBA,
故选项D结论正确.
故选C.
∵BD=DC,AE=EC,
∴O是△ABC的重心,
∴AO=2OD,
故选项A、B结论正确;
∵∠AOE=∠BOD,
AO |
OD |
OE |
OB |
1 |
2 |
∴△BOD、△AOE不相似,
故选项C结论错误;
∵BD=DC,AE=EC,
∴DE是△ABC的中位线,
∴DE∥AB,
∴△CDE∽△CBA,
故选项D结论正确.
故选C.
点评:本题考查了相似三角形的判定和性质,三角形中位线定理.三角形三条中线的交点就是三角形的重心,实际上,两条中线的交点就是重心.
练习册系列答案
相关题目