题目内容
【题目】如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至,旋转角为.
(1)当点恰好落在EF边上时,求旋转角的值;
(2)如图2,G为BC的中点,且00<<900,求证:;
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,与能否全等?若能,直接写出旋转角的值;若不能,说明理由.
【答案】(1)∠α=300(2)见解析(3)旋转角a的值为1350或3150时,△BCD′与∠DCD′全等
【解析】
试题(1)根据旋转的性质得CE=CH=1,即可得出结论;
(2)由G为BC中点可得CG=CE,根据旋转的性质得∠D′CE′=∠DCE=90°,CE=CE′CE,则∠GCD′=∠DCE′=90°+α,然后根据“SAS”可判断△GCD′≌△E′CD,则GD′=E′D;
(3)根据正方形的性质得CB=CD,而CD=CD′,则△BCD′与△DCD′为腰相等的两等腰三角形,当两顶角相等时它们全等,当△BCD′与△DCD′为钝角三角形时,可计算出α=135°,当△BCD′与△DCD′为锐角三角形时,可计算得到α=315°.
试题解析:(1)
∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴CE=CH=1,∴△CEH为等腰直角三角形,∴∠ECH=45°,∴∠α=30°;
(2)证明:∵G为BC中点,∴CG=1,∴CG=CE,∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′和△E′CD中,∵CD′=CD,∠GCD=∠DCE′,CG=CE′,∴△GCD′≌△E′CD(SAS),∴GD′=E′D;
(3)解:能.
理由如下:
∵四边形ABCD为正方形,∴CB=CD,∵CD′=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形,当∠BCD′=∠DCD′时,△BCD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,则旋转角α=(360°-90°)÷2=135°,当△BCD′与△DCD′为锐角三角形时,∠BCD′=∠DCD′=∠BCD=45°,则α=360°﹣90°÷2=315°,即旋转角a的值为135°或315°时,△BCD′与△DCD′全等.