题目内容
解方程:
(1)x2+6x-5=0(用配方法)
(2)2x2+6x-1=0(用公式法)
(3)2(x-3)2=x2-9
(4)(x+1)(x-3)=12.
(1)x2+6x-5=0(用配方法)
(2)2x2+6x-1=0(用公式法)
(3)2(x-3)2=x2-9
(4)(x+1)(x-3)=12.
(1)x2+6x+9=14,
(x+3)2=14,
x+3=±
,
所以x1=-3+
,x2=-3-
;
(2)a=2,b=6,c=-1,
△=36-4×2×(-1)=44,
x=
=
,
所以x1=
,x2=
;
(3)2(x-3)2=(x+3)(x-3),
2(x-3)2-(x+3)(x-3)=0,
(x-3)(2x-6-x-3)=0,
(x-3)(x-9)=0,
x-3=0或x-9=0,
所以x1=3,x2=9;
(4)x2-2x-3=12,
x2-2x-15=0,
(x+3)(x-5)=0
x+3=0或x-5=0,
所以x1=-3,x2=5
(x+3)2=14,
x+3=±
14 |
所以x1=-3+
14 |
14 |
(2)a=2,b=6,c=-1,
△=36-4×2×(-1)=44,
x=
-6±
| ||
4 |
-3±
| ||
2 |
所以x1=
-3+
| ||
2 |
-3-
| ||
2 |
(3)2(x-3)2=(x+3)(x-3),
2(x-3)2-(x+3)(x-3)=0,
(x-3)(2x-6-x-3)=0,
(x-3)(x-9)=0,
x-3=0或x-9=0,
所以x1=3,x2=9;
(4)x2-2x-3=12,
x2-2x-15=0,
(x+3)(x-5)=0
x+3=0或x-5=0,
所以x1=-3,x2=5
练习册系列答案
相关题目